NFA (Non-Deterministic finite automata)

> NFA stands for non-deterministic finite automata. It is easy to construct an NFA than DFA for a given regular language.
> The finite automata are called NFA when there exist many paths for specific input from the current state to the next state.
$>$ Every NFA is not DFA, but each NFA can be translated into DFA.
> NFA is defined in the same way as DFA but with the following two exceptions, it contains multiple next states, and it contains ε transition.

NFA also has five tuples same as DFA, but with different transition functions, as shown as follows:

1. Q: finite set of states
2. \sum : finite set of the input symbol
3. q 0 : initial state
4. F : final state
5. δ : Transition function
note: δ in NFA $\delta: Q \times \sum \rightarrow 2^{\mathrm{Q}}$, but in DFA $\delta: \mathrm{Q} \times \sum \rightarrow \mathrm{Q}$

Ex: NFA with $\sum=\{0,1\}$ and accepts all strings with 01.

δ-table:

state	0	1
$\rightarrow \mathrm{q} 0$	q 1	ε
q 1	ε	q 2
${ }^{*} \mathrm{q} 2$	q 2	q 2

Ex:

$L=\left\{1 x \mid x \in\{0,1\}^{*}\right\}$ in DFA, NFA machines.

DFA:

* A nondeterministic finite automata (NFA) allows transitions on a symbol from one state to possibly more than one other state.

Allow ε-transitions from one state to another whereby we can move from the first state to the second without inputting the next character.

* In an NFA a state may have zero, one, or more exiting arrows for each symbol of alphabet.

$$
\sum=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}
$$

Basic NFA ideas

\checkmark Start in the start state.
\checkmark If any ε transition, clone a machine for each.
\checkmark Read a symbol, and clone a machine for each matching transition.
\checkmark If a symbol is read and there is no way to exit from a state, that machine dies.
\checkmark At the end of input if any machine accepts then accept.

Ex: Build NFA machine that accepts strings containing either 101 or 11 as a substring for $\left.\sum=0,1\right\}$, and read 010110 .

Read: 010110

Equivalence of machines
Definition:
Machine M_{1} is equivalent to machine M_{2} if $\mathrm{L}\left(\mathrm{M}_{1}\right)=\mathrm{L}\left(\mathrm{M}_{2}\right)$
Example of equivalent machines:
$L=\left\{1 x \mid x \in\{0,1\}^{*}\right\}$
DFA:
NFA:

Any language L accepted by a DFA is also accepted by an NFA

Proof by construction:

given an arbitrary NFA \mathbf{N}, construct an equivalent DFA D
suppose that N of the $\sum=\{0,1\}$ is as follows:

Solution:

