NFA (Non-Deterministic finite automata)

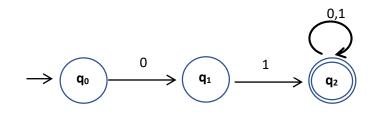
- » NFA stands for non-deterministic finite automata. It is easy to construct an NFA than DFA for a given regular language.
- > The finite automata are called NFA when there exist many paths for specific input from the current state to the next state.
- > Every NFA is not DFA, but each NFA can be translated into DFA.
- > NFA is defined in the same way as DFA but with the following two exceptions, it contains multiple next states, and it contains ε transition.

NFA also has five tuples same as DFA, but with different transition functions, as shown as follows:

- 1. Q: finite set of states
- 2. \sum : finite set of the input symbol
- 3. q0: initial state
- 4. F: final state
- 5. δ : Transition function

<u>note</u>: δ in NFA δ : Q x $\sum \rightarrow 2^Q$, but in DFA δ : Q x $\sum \rightarrow Q$

Ex: NFA with $\sum = \{0, 1\}$ and accepts all strings with 01.

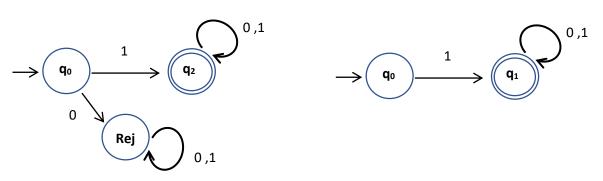


δ-table:	state	0	1
	→q0	q1	З
	q1	ε	q2
	*q2	q2	q2

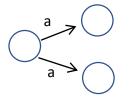
Ex:

L= $\{1x | x \in \{0,1\}^*\}$ in DFA, NFA machines.

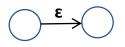
DFA:



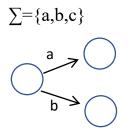
✤ A nondeterministic finite automata (NFA) allows transitions on a symbol from one state to possibly more than one other state.



Allow ε-transitions from one state to another whereby we can move from the first state to the second without inputting the next character.

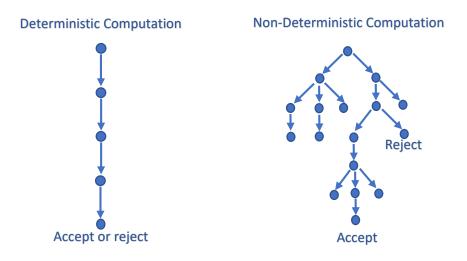


In an NFA a state may have zero, one, or more exiting arrows for each symbol of alphabet.

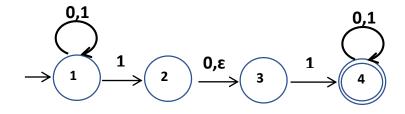


Basic NFA ideas

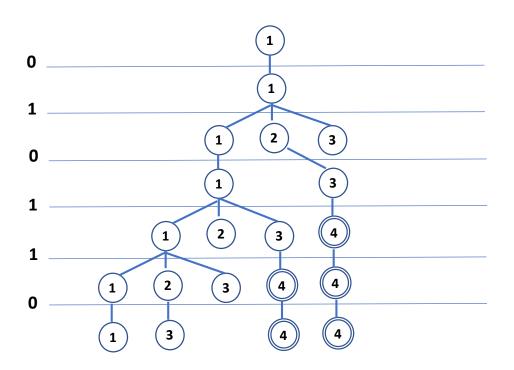
- \checkmark Start in the start state.
- ✓ If any ε transition, clone a machine for each.
- \checkmark Read a symbol, and clone a machine for each matching transition.
- ✓ If a symbol is read and there is no way to exit from a state, that machine dies.
- \checkmark At the end of input if any machine accepts then accept.



Ex: Build NFA machine that accepts strings containing either 101 or 11 as a substring for $\sum = 0, 1$, and read 010110.



Read: 010110



Equivalence of machines

Definition:

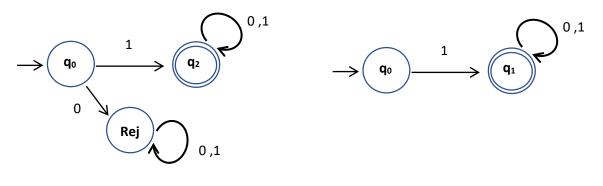
Machine M_1 is equivalent to machine M_2 if $L(M_1) = L(M_2)$

Example of equivalent machines:

L= {1x|x
$$\in$$
 {0,1}*}

DFA:

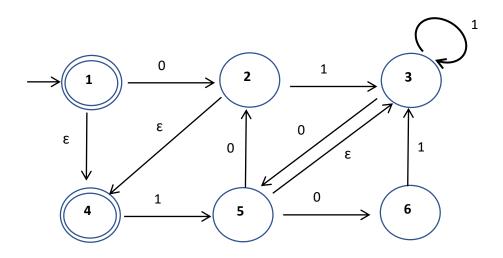
NFA:



Any language L accepted by a DFA is also accepted by an NFA

Proof by construction:

given an arbitrary NFA **N**, construct an equivalent DFA **D** suppose that N of the $\sum = \{0, 1\}$ is as follows:



Solution: 0,1 0 0 {2,4} Ø {1,4} 1 1 K 0 {2,3,4,5,6} {3,5} 0 1 1 0 **{3**} 1

